In [1]:
%matplotlib inline
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'retina' # I use a HiDPI screen
In [2]:
from plot_derived_parameters.plot_function import *
In [3]:
# load in the data
chainLocation = "analysis/chains/"
planck2015Data = loadChainFolder( 'plot_derived_parameters/chains/CDI_2/' )
In [4]:
# take a look at what is in this table
planck2015Data.colnames
Out[4]:
In [18]:
# determine 95% percentile isocurvature power
# (I'm using P_II^2, you could use some other choice)
quantity = planck2015Data["P_{II}^2"]
plt.hist(quantity)
upper_95 = np.percentile(quantity, 95)
plt.xlabel(r"$P_{II}^2$")
plt.axvline(upper_95, color="red", label="95%")
plt.legend()
# plt.yscale("log")
Out[18]:
In [19]:
# filter by this large isocurvature fraction and get the maximum likelihood sample
filtered = planck2015Data[quantity > upper_95]
filtered[ np.argmax(-filtered["likelihood"]) ]
Out[19]:
In [ ]:
In [ ]: